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Abstract 

Santos Jr, E., A linear constraint satisfaction approach to cost-based abduction, Artificial 
Intelligence 65 (1994) 1-27. 

Abduction is the problem of finding the best explanation for a given set of observations. 
Within AI, this has been modeled as proving the observation by assuming some set 
of hypotheses. Cost-based abduction associates a cost with each hypothesis. The best 
proof is the one which assumes the least costly set. Previous approaches to finding the 
least cost set have formalized cost-based abduction as a heuristic graph search problem. 
However, efficient admissible heuristics have proven difficult to find. In this paper, we 
present a new technique for finding least cost sets by using linear constraints to represent 
causal relationships. In particular, we are able to recast the problem as a 0-1 integer 
linear programming problem. We can then use the highly efficient optimization tools of 
operations research yielding a computationally efficient method for solving cost-based 
abduction problems. Experiments comparing our linear constraint satisfaction approach 
to standard graph searching methodologies suggest that our approach is superior to 
existing search techniques in that our approach exhibits an expected-case polynomial 
run-time growth rate. 

1. In troduct ion  

Abduct ive  explanation h a s  b e e n  f o r m a l i z e d  in  A I  as  t he  p r o c e s s  o f  s e a r c h i n g  

fo r  s o m e  set  o f  a s s u m p t i o n s  t h a t  can  p r o v e  the  t h ings  to  b e  e x p l a i n e d  

[ 2 , 3 , 5 , 9 , 1 0 , 1 4 - 1 6 , 1 9 - 2 1 ] .  W e  cal l  e ach  such  set  an  explanation fo r  t he  
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2 E. Santos Jr 

given evidence. For example, consider the following situation: "John visits 
his friend Mary's house and finds that the place is dark and quiet. He 
concludes that Mary is not home." John's conclusion is a form of abductive 
explanation and cannot be arrived at by purely deductive means. 

The information John used to arrive at his conclusion can be described 
with the following set of  propositions: 

house-dark A house-quiet 
lights-out 
no-one-home V blackout 
tv-off A radio-off 
no-one-home V no-shows V blackout 

==~ house-dark-quiet, 
house-dark, 

= ¢  lights-out, 
=¢  house-quiet, 
==~ tv-off, 

no-one-home V bad-songs V blackout =:~ radio-off, 

where "A", "V", and " ~ "  denote conjunction, disjunction, and implication, 
respectively. The abductive reasoning task can be viewed as a backward- 
chaining process on the propositions. In essence, we are traveling backwards 
through the implications in hopes of finding a set of  assumptions which can 
serve as an explanation for the evidence. For example, assuming that no 
one is home is a possible explanation for the house being dark and quiet. 

A basic problem which naturally arises in abductive reasoning is that there 
may be many different possible explanations available. Using traditional 
symbolic logic, the only measure of a set's viability as an explanation is 
whether or not the evidence can be deductively inferred from the set. Thus, 
even the most far-fetched set of  assumptions can be a possible candidate 
as long as it proves the evidence. In the above example, the house may 
be dark and quiet because of a blackout which in general is a slightly less 
plausible possibility. A related, but slightly different problem concerns the 
explanation whereby John simply assumes that the house is dark and quiet. 
This is a perfectly legitimate answer but provides no useful information. 

We can easily see that some preferential ordering on the explanations is 
necessary. Early measures based on minimizing the necessary number of 
hypotheses [5,10] have been shown to be inadequate [3,9,21] suggesting 
the use of a more sophisticated approach. One such approach proposed 
by Hobbs and Stickel [1,9,21 ], called weighted abduction, involves levying 
numerical costs on individual assumptions. The cost of an explanation is a 
function of the cost of  the individual assumptions made in the explanation. 
These costs are used in an effort to guide the abductive system towards the 
intended explanations. The final choice for best explanation will be the one 
with least cost. 

Here, we will consider a minor variant of  weighted abduction called 
cost-based abduction presented in [3 ]. It has been shown in [3 ] that belief 
revision in Bayesian networks [ 13 ] can be accurately modeled by cost-based 
abduction. 
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Fig. 1. A simple WAODAG. The AND-node house-dark-quiet is the observation. The nodes 
no-one-home, no-shows, blackout, and bad-songs are the hypotheses with associated costs 7, 6, 10, 
and 3, respectively. The assignment of {no-one-home} to true and (bad-songs, blackout,no-shows} 
to false results in lights-out, radio-off, tv-off, house-dark, and house-quiet to be true. This proof 

has a cost of 7 and is the minimal cost proof. 

In cost-based abduction, hypotheses have associated costs, and the cost of  
a proof is simply the sum of  the costs of  the hypotheses required to complete 
that proof. Examples of such proofs can be found in [2,3]. Central to this 
approach is the use of directed acyclic graphs called WAODAGS (or ,  weighted 
AND/OR directed acyclic graphs) [2,3] to represent relationships between 
hypotheses and the evidence to be explained. Each node represents some 
proposition, and the connections explicitly detail the relationships between 
different propositions. Furthermore, each node in a WAODAG corresponds 
to a logical AND or OR operation on its immediate parents. 

An assignment of a truth value to each node is considered a proof if 
it is consistent with respect to the boolean network and if the items we 
wish to explain have been explained, i.e., have been assigned a value 
of true. Consequently, each such proof will have an associated cost. The 
goal is to find an assignment which has minimal cost (see Fig. 1 ). How- 
ever, it has been shown that this problem is NP-hard [3]. NP-hardness 
is, of  course, a worst-case complexity measure. One might nevertheless 
hope that a technique could be found which works well on the prob- 
lems which come up in practice. Unfortunately, the current approaches 
show exponential growth in practice as well as in theory. These current 
approaches to finding the best proof have centered around using a best- 
first search technique and expanding partial proofs to search for the best 
proof [2]. 

In this paper, we present an approach that uses linear constraints to 
represent causal relationships. Each node in a WAODAG is  treated as a 
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Fig. 2. A simpler WAODAG. The AND-node house-quiet is the observation. The nodes 
no-shows, blackout, and bad-songs are the hypotheses with associated costs 6, 7, and 3, re- 

spectively. 

variable and constraints between nodes are represented by linear inequalities. 
Linear programming techniques are then used to minimize a cost function 
associated with the WAODAG. This results in a minimal cost proof for the 
original problem. Occasionally, since we model true and false values with 
"1" and "0", straight linear programming techniques may not arrive at the 
proper solution. We thus need to augment our approach. Although the initial 
solution may not be 0-1, we can use the bounding information it provides 
in an incremental branch-and-bound search which will guarantee a minimal 
cost proof. The experimental results (see Section 4) show however that 
the branch-and-bound is rarely required. Indeed, as opposed to the current 
search techniques, our linear programming technique shows expected-case 
polynomial growth rate on typical problems. 

In Section 2, we present our formulation of cost-based abduction in terms 
of linear constraints and show that by working with these constraints, we 
can effectively determine the minimal cost proof. In Section 3, we describe 
the branch-and-bound algorithm which occasionally augments our linear 
constraint system. In Section 4, we describe and analyze the experimental 
results of our linear constraint satisfaction approach in comparison to ex- 
isting search heuristics. Finally, in Section 6, we present some concluding 
thoughts and discuss some future research problems. 

2. Cost-based abduction and linear constraints 

We now formalize the cost-based abduction problem: 

Notation. • denotes the set of real numbers. 
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Definition 2.1. A WAODAG 1 is a 4-tuple (G,c,r ,S) ,  where: 
(1) G is a directed acyclic graph, G = (V, E) ;  
(2) c is a function from V x {true, false} to R, called the cost function; 
(3) r is a function from V to  {AND, OR}, called the label; a node labeled 

AND is called a n  AND-node, etc.; 
(4) S is a subset of  nodes in V called the evidence nodes. 2 

Notation. Vn is the set of  all nodes in V with indegree 0. The nodes in VH 
are also called the hypothesis nodes. 

Clearly, an explanation is the same as a proof for cost-based abduction. 
We formally define a proof  for a set of  observations as an assignment of  
truth values to the different propositions in the knowledge base such that 
the observations are true and the assignments are consistent with respect to 
the boolean relationships between the propositions. 

In Fig. 2, assume that house-quiet = true is the observation to be ex- 
plained. One possible proof  would be the following assignment of  truth 
values: {house-quiet, radio-off, bad-songs, tv-off, no-shows} are assigned true 
and {no-one-home} is assigned false. A second possibility is to assign all of  
them to true. And as a third possibility, we can assign {house-quiet, radio-off, 
tv-off, no-one-home} to true and {bad-songs, no-shows} to false. As we can 
easily see, all three assignments are internally consistent with the boolean 
relationships and assign house-quiet to true. 

More formally, we define this as follows: 

Definition 2.2. A truth assignment for a WAODAG W -~ ( G , c , r , S )  where 
G = (V,E) is a function e from V to {true, false}. We say that such a 
function is valid iff (if and only if) the following conditions hold: 

(1) For all AND-nodes q, e(q) = true i f f fo r  all nodes p such that (p,q) 
is an edge in E, e (p )  = true. 

(2) For all OR-nodes q, e(q) = true iff there exists a node p such that 
(p, q) is an edge in E and e (p) = true. 

Furthermore, we say that e is an explanation iff e is valid and for each node 
q in S, e(q) = true. 

In propositional logic, A A B ~ C corresponds to "If  A and B are 
both true, then C is true". As we mentioned earlier, simply assuming the 
antecedent C is typically unsatisfactory as an explanation for C. Note that 
our definition of  valid explanations disallows the case where C is true but 

l Slight generalization of Charniak and Shimony [ 3 ] 
2S represents the set of observations to be explained. Without loss of generality, we only 

consider positive evidence. 
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both A and B are false. However, we can straightforwardly model the ability 
to simply assume C if necessary. 

Once we have the different possible explanations for some observation, 
we must associate a cost with each one to impose some order reflecting the 
goodness of proofs. As we mentioned earlier, the cost of a proof is simply 
the sum of the individual costs of  the hypotheses assumed. 3 

Definition 2.3. We define the cost of an explanation e for W = (G,c,r,S) 
where G = ( V, E)  as 

C(e)  = ~--~ c (q ,e (q) ) .  (1) 
qEV 

An explanation e which minimizes C is called a best explanation for W. 

From (1), we find that our three proofs above have costs 9, 16, and 7, 
respectively. Of  the three our best proof is the third one with the cost of  7. 

Now we show how to formulate our cost-based abduction as a linear 
constraint system. 

Definition 2.4. A linear constraint system is a 3-tuple (F, I, ~ )  where F is a 
finite set of  variables, I is a finite set of  linear inequalities based on F,  and 

is a function from F × {true, false} to R. 

Notation. For each node q in V, let Dq = {p I (P, q) is an edge in E} be 
the parents of  q. IDql is the cardinality of  Dq. 

From Definition 2.2, for a truth assignment to be a possible explanation, 
we must guarantee the internal consistency of  the assignments required in 
the definition. This internal consistency is the same consistency required in 
boolean combinational circuits. We must guarantee the correct assignment 
of  input values versus output values of  each AND/OR-node  in the WAODAG. 

Like values in boolean circuits, we can use numerical assignments instead 
of  true or false. In general, we use 1 for true and 0 for false. By taking this 
viewpoint, we can now consider the internal consistency as some form of 
mathematical formulae to be satisfied where each node is actually a variable 
in the equation. Our purpose is now to show how these equations can be 
derived and then prove that they guarantee the internal consistency required. 

We begin our derivation with the simplest of  the requirements. Let q be 
an evidence node in our WAODAG. Associate the variable xq with q. Since q 

3Although we have only discussed having costs associated with hypotheses, our approach 
permits costs to be associated with any node. 
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is an evidence node, any explanation for q must assign q to true. This can 
be modeled by the equation 

Xq=l. 

Next, let q be an AND-node with parents Dq. We have the following: q is 
true i f f  p is true for all nodes p in Dq. Symmetrically, q is false i f f  there exists 
a p in Dq such that p is false. We can accomplish this with the equations 
(2) and (3): 

xq ~< xp for each p ~ Dq, (2) 

which guarantees that 

( 1 ) q being t r u e  forces all p in Dq to be true, and 
(2) some p in Dq being false forces q to be false; 

g o - I D q l  + 1 ~ xq (3) 
p~Dq 

guaranteeing that 

( 1 ) q being false forces some p in Dq to be false, and 
(2) if  all p in Dq are true, then q must be true. 

Note that at this time we are assuming that our variables may only take 
values of  0 or 1 although there is no upper or lower bound on the results 
of  evaluating either side of  the equation. For example, let Dq = {a, b, c, d},  
xa = Xb = x¢ = 0 and Xd = 1. This implies that the summation side of  
equation 3 above yields -2!  

Finally, the OR-node can be modeled with the following equations: 

pED¢ 

xq >>. xp for e a c h p e D q ,  

where q is an OR-node with parents Dq. 
Together, these equations will guarantee the internal consistency needed 

for a truth assignment to be an explanation. Also, any explanation is guar- 
anteed to satisfy this set. We formalize our construction as follows: 

Definition 2.5. Given a WAODAG W ---- ( G , c , r , S )  where G = (V,E) ,  we 
can construct a linear constraint system L (W)  = (F, I, ~,), where: 

( 1 ) F is a set of  variables indexed by V, i.e., F = {xq I q E V}; 
(2) ~/(Xq, X )  = c ( q , X )  for all q E V and X E {true, false}; 
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(3) I is the collection of all inequalities of the forms given below: 

Xq ~ Xp E I for each p E Dq, if r(q) = AND, (4) 

~ p e D q X p - l D q l  + 1 < ~ X q C I ,  i f r ( q )  =AND, (5) 

~p~o~ xp >i Xq E I, if r(q) = OR, (6) 

Xq > I x p 6 I  for e a c h p E D q ,  i f r ( q )  =OR. (7) 

We say that L (W) is induced by W. Furthermore, by including the addi- 
tional constraints: 

Xq = 1, i f q  E S (8) 

we say that the resulting linear constraint system is induced evidentially by 
W and is denoted by LE (W). 

Definition 2.6. A variable assignment for a linear constraint system L = 
(F, I, ~,) is a function s from F to R. Furthermore, 

(1) if the range o f s  is {0, 1}, then s is a 0-1 assignment; 
(2) i f s  satisfies all the constraints in I, then s is a solution for L; 
(3) if s is a solution for L and is a 0-1 assignment, then s is a 0-1 

solution for L. 

With our formulation of linear constraint systems and variable assign- 
ments, we can now prove that 0-1 solutions are equivalent to explanations. 
Given a 0-1 assignment s for L (W), we can construct a truth assignment 
e for W as follows: 

(1) For all q in V, s(xq) = 1 i f f e ( q )  = true. 
(2) For all q in V, s(xq) = 0 i f f e ( q )  = false. 

Conversely, given a truth assignment e for W, we can construct a 0-1 
assignment s for L (W).  

Notation. e [s] and s [e ] denote, respectively, a truth assignment e con- 
structed from a 0-1 assignment s, and a 0-1 assignment s constructed from 
a truth assignment e. 

We can show that all explanations for a given WAODAG W have corre- 
sponding 0-1 solutions for LE (W) and vice versa. 

Theorem 2.7. I f  e is an explanation for W, then s[e] is a 0-1 solution for 
L (W) .  
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(Proofs can be found in Appendix A.) 

Corollary 2.8. Let L be constructed from L (W) by eliminating all constraints 
of  the forms (5) and (7). I f  e is an explanation for W, then s[e] is a solution 
o f L .  4 

Conditions (4) and (6) are called bottom-up constraints since they dictate 
the values of  variables from the direction of  the evidence nodes. Symmet- 
rically, (5) and (7) are called top-down constraints. As we shall see later 
in this section, Corollary 2.8 will demonstrate certain enhancements and 
improvements which can be made to our approach. 

Theorem 2.9. I f  s is a 0-1 solution for L E ( W ) ,  then e[s] is an explanation 
for W. 

From Theorems 2.7 and 2.9, 0-1 solutions for linear constraint systems are 
the counterparts of  explanations for WAODAGS. By augmenting a WAODAG 
induced linear constraint system with a cost function, the notion of  the cost 
of  an explanation for a WAODAG can be transformed into the notion of  the 
cost of  a 0-1 solut ion for the linear constraint system. 

To complete the derivation, we must also be able to compute the costs 
associated with each proof. We can do this as follows: 

Definition 2.10. Given a linear constraint system L (W)  = (F, I, ~ ) induced 
(evidentially) by a WAODAG W, we construct a function OL from variable 
assignments to R as follows: 

OL(S)  = y ~ { S ( X q ) ~ ( X q , t r u e )  q- ( l  - -S (Xq) )~ (Xq , fa l se ) } .  (9) 
xqEF 

OL is called the objective function of L (W).  

Definition 2.11. An optimal 0-1 solution for a linear constraint system 
L ( W )  = (F,I,  q/) induced (evidentially) by a WAODAG W is a 0-1 so- 
lution which minimizes Or,. 

As we can clearly see, (9) is identical to (1). From Theorems 2.7 and 2.9 
and the relationship between node assignments and variable assignments, 
an optimal 0-1 solution in LE (W)  is a best explanation for W and vice 
versa. 

Taking the set of  linear inequalities I and the objective function OL, 
we observe that we have the elements known in operations research as a 

4L is later defined as a WAODAG-semi-induced linear constraint system. 
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linear program [11,12,18]. The goal of  a linear program is to minimize 
an objective function according to some set of  linear constraints. Highly 
efficient methods such as the simplex method 5 and Karmarkar's projective 
scaling algorithm are used to solve linear programs [ 11,12,18 ]. Empirical 
studies have shown that the average running time of the simplex method is 
roughly linear with respect to the number of  constraints and the number of 
variables in the linear program [12]. 

Proposition 2.12. Given a WAODAG W = (G,c ,r ,S) ,  where G = (V,E),  i f  
L E ( W )  = ( I ' , I , ~ )  is induced evidentially from W, then I I I =  IEL + I V -  
vul + ISl. 

Although our linear constraint systems seem similar in nature to linear 
programs, linear programs cannot make restrictions which cannot be mod- 
eled by linear inequalities. Thus, solutions which minimize the objective 
function may not be strictly 0 and 1. However, if the solution is a 0-1 
solution, then the best explanation is found. (From our experiments, as we 
shall see later, the optimal solutions for many of these linear programs will 
in fact be 0-1 solutions. Thus, the best explanation can be found by just 
using the straight simplex methods on the problems.) If  the solution is not 
a 0-1 solution, the value for the objective function generated by such a 
solution still provides an excellent lower bound to the cost of  an optimal 
0-1 solution. This lower bound will be used to direct our search for an 
optimal 0-1 solution as we shall see below. 

For computing the lower bound, WAODAG induced linear programs are 
well suited for the simplex method. The constraint matrices for these types 
of  linear programs are extremely sparse and consist of  only three values: 
-1 ,  0, 1. Furthermore, detailed knowledge of  the problem structure can 
be exploited to even further improve performance. The following theorem 
shows that the number of  linear inequalities can be reduced under certain 
conditions. 

Definition 2.13. Given a W A O D A G  W = (G,c , r ,S) ,  where G = (V,E),  we 
can construct a linear constraint system L ( W )  = (F, I, ~u) where: 

(1) F is a set of  variables indexed by V, i.e., F = {Xq I q E V}; 
(2) ~(xq,  X )  = c ( q , X )  for all q E V and X E {true, false}; 
(3) I is the collection of  all inequalities of  the forms given below: 

Xq ~ Xp E I for each p E D a, if r(q) = AND, 

Y~ueoq xp >i xq E I, if r(q) = OR. 

(4) 

(6) 

5For a quick overview of the simplex method, see [8] 
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We say that L ( W )  is semi-induced by W. Furthermore, by including the 
additional constraints: 

xq = 1, i f q E S  (8) 

we say that the resulting linear constraint system is semi-induced evidentially 
by W and is denoted by LE (W). (Properties associated with induced linear 
constraint systems are easily generalizable to semi-induced ones.) 

A semi-induced linear constraint system is simply an induced linear con- 
straint system lacking top-down constraints. From Corollary 2.8, the set of 
possible solutions for LE (W) is a superset of the set of possible explanations 
for W. 

Theorem 2.14. Let W = (G ,c , r , S )  be a WAODAG, where G = (V ,E) .  An 
optimal 0-1 solution for LE(W) can be transformed into a best explanation 
for W in O(IEI) steps i f  c(p, false) <<. c(p, t rue)for all nodes p in V. 

For transformation, see the proof of Theorem 2.14 in Appendix A. In 
general, transforming a 0-1 optimal solution for LE (W) requires at most 
2[E[ steps. 

Corollary 2.15. Let W = (G ,c , r , S )  be a WAODAG, where G = (V ,E) .  An 
optimal O- 1 solution for ]-,E ( W )  is a best explanation for W i f  c (p, false ) < 
c (p, true) for all nodes p in V. 

From the above theorem, a best explanation for W can be found by 
solving a smaller linear program. 

Intuitively, we note that the information required to find an optimal 0- 
1 solution is propagated from true assignments which originate from the 
evidence nodes and thus, results in a bottom-up fashion of processing. In 
terms of our linear constraint system, constraints need only be sensitive to 
the information from one direction, namely from the evidence nodes. 

Proposition 2.16. Given a WAODAG W = (G,c , r ,S ) ,  where G = (V ,E) ,  i f  
LE(W) = (F, I ,  ¢/) is semi-induced evidentially by W, then 

I11 = [{(p,q) ~ E l  r (p)  = AND}I + IVoI + ISI, 

where Vo is the subset o f  all nodes in V which are labeled OR and have 
nonzero outdegree. 

Many other types of improvements may also be employed. Some arise 
from the intimate knowledge of our domain while others are techniques 
used for general linear programming problems. 
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Fig. 3. In this simple WAODAG, the OR-node house-quiet is the observed evidence, blackout 
is the only hypothesis available. 

Although only WAODAGS are used in the preceding discussions, one can 
easily generalize our linear constraint satisfaction approach to arbitrary 
boolean gate-only networks. 

3. Branch-and-bound 

As we mentioned in the previous section, the solution to a WAODAG 
induced linear program need not consist strictly of 0s and ls. For example, 
consider the simple WAODAG in Fig. 3. (Note that we will use the terms 
linear constraint systems and linear programs interchangeably throughout 
this section.) From this WAODAG, the following linear program is generated 
from our semi-induced linear constraint system L = (F, I, ¢/): 

H = l ,  
H < ~ R + T ,  
B>~ R, 
B>~ T, 
0 <, H , R , T , B  <~ 1, 

and has objective function: 

OL(S) = s ( B ) q / ( B ,  t rue )+ (1 - s ( B )  ) v ( B ,  false), 

where H, R, T, B E F respectively stand for house-quiet, radio-off, w-off, and 
blackout. Furthermore, assume 9,(B, false) = 0 and v ( B ,  t rue )>  0. 

We can easily show that the solution which minimizes the objective 
function is as follows: H = 1, R = 0.5, T = 0.5, and B = 0.5 with 
OL(s)  = ¢/(B, true)/2. We call B a shared node in our WAODAG. An OR- 
node such as H with assigned value strictly greater than its parents is called 
a divide node. (It is easy to show that either an OR-node is a divide node, 
or that all of  its parents are 0 or the same value as the OR-node.) 

Looking closely at Fig. 3, we could easily remedy this problem by in- 
troducing the constraint house-quiet ~< blackout. This new constraint reflects 
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the fact that the value for house-quiet is ultimately determined by blackout. 
Simple patches like this one could be used to prevent this type of  split node 
problem. However, most are nontrivial to identify and repair. 

With small linear programs like the one above, using a brute-force tech- 
nique of  simply trying each possible assignment maybe feasible. Of  course, 
the run-time grows exponentially with respect to the size of  the problem. 6 

The technique to be presented avoids the necessity of  searching the entire 
solution space by using the lower bound computed by the linear program. 
This is a standard technique used in many domains to speed up processing 
time. 

The basic idea is as follows: To find an optimal 0-1 solution, we solve 
a sequence of  linear programs. This sequence can be represented by a tree 
where each node in the tree is identified with a linear program that is 
derived from the linear programs on the path leading to the root of  the 
tree. The root of  the tree is identified with the linear program induced by 
our WAODAG. The linear programs along the nodes of  the tree are generated 
using the following schema: Consider so, the optimal solution to our initial 
linear program denoted lp 0. If  So is a 0-1 solution, then we are finished. 
Otherwise, we choose some non-integral variable Xq in So and define two 
new problems lpl and lp2 as descendants of  lp 0. lp 1 is identical to lP0 except 
for the additional constraint xq = 1, and lP2 is identical to lPo except for the 
additional constraint Xq = 0. Note that the two new problems do not have 
So as their optimal solutions. Since we are looking for a 0-1 assignment, the 
optimal 0-1 solution must satisfy one of  the additional constraints. The two 
new nodes just defined are called active nodes and the variable Xq is called 
the branching variable. 

Next, we choose one of  the problems identified with an active node and 
attempt to solve it. It is not necessary to run a complete simplex method 
on the linear program. Using methods such as the dual simplex algorithm 
[12,18], information is used in an incremental manner from other runs 
resulting in a quick and efficient computation. If  the optimal solution is not 
a 0-1 solution, then two new problems are defined based on the current 
linear program. These new problems contain all the constraints of  the parent 
problem plus the appropriate additional one. 

When a 0-1 solution is found for some active node, the value of  its 
objective function is compared against the current best. If  the cost of  the 
new solution is better than the current best, it is then used to prune those 
active nodes whose computed lower bounds exceed this value. This solution 
also now becomes the current best solution. 

Branching continues in this manner until there are no active nodes in the 

6See integer programming techniques [ 11,12,18 ] 
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tree. At the end, the current best solution is guaranteed to be the optimal 
0-1 solution. 

This technique is generally classified as a branch-and-bound technique in 
the area of  integer linear programming [12,18]. Also, it can be applied to 
any linear constraint system regardless of  whether or not they are WAODAG 
induced. 

Notation. We denote a linear program by an ordered pair (I, 0 ) ,  where I 
is a set of  linear constraints and 0 is an objective function. 

Algorithm 3.1. Given a linear constraint system L = 
optimal 0-1 solution. 

(1) 
(2) 

(3) 
(4) 
(5) 
(6) 

(7) 

(F , I ,q / ) ,  find its 

(8) 
(9) 

(10) 
(11) 
(12) 

(13) 
(14) 

Initialization. Set CurrentBest :=  0 and ActiveNodes := {(I, OL)}. 
If  ActiveNodes = 0 then go to step (14). Otherwise, let lp be some 
linear program in ActiveNodes. 
ActiveNodes :=  ActiveNodes-  {lp}. 
Compute the optimal solution s °pt for lp using simplex, etc. 
If  s °pt is a 0-1 solution, then go to step (12). 
Bound. If  CurrentBest ~ 0 and OL (s °pt) > OL (CurrentBest), then go 
to step (2). 
Branch. Choose some variable Xq in lp whose value in s °pt is non- 
integer. 
Set 1 1 : = I U { x q  = 0 } a n d 1 2 : = I U { x q  = 1}. 
Create two new linear programs lp I : = (I1, OL ) and lP2 : = (•2, OK ). 
ActiveNodes : = ActiveNodes U {lPl , lp2}. 
Go to step (2). 
0-1 solution. If CurrentBest = 0 or OL (s °pt) < OL (CurrentBest), then 
set CurrentBest : = s °pt and prune ActiveNodes using CurrentBest. 
Go to step (2). 
Solution. Print CurrentBest. 

To solve Fig. 3, we choose tv-off to be our first branching variable. 
Following Algorithm 3.1 above, we generate two new linear programs: 

L I :  H = 1, L2:  H = 1, 
H <~ R + T ,  H <~ R + T ,  
B > ~ R ,  B > ~ R ,  
B>>. T, B>_. T, 
0 <<. H , R , T , B  <~ 1, 0 <<. H , R , T , B  ~ 1, 
T = 0 ,  T =  1, 

both with objective function: 

OL(s) = s ( B ) ~ ( B ,  true) + (1 - s (B)  )~ (B ,  false). 
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We first note that tv-off is now a fixed value in both LI and L2. Since the 
original optimal value of  tv-off was 0.5, both L1 and L 2 n o w  exclude this 
possibility which effectively eliminates the original optimal solution from 
their respective feasible solutions space. From simple observation, we find 
that the optimal solutions for L1 and L2 are {H = R = B = 1, T = 0} for 
L1 and {H = T = B = 1,R = 0} for L2. The cost for both assignments 
is ~,(B, true). We can easily show that both assignments are optimal 0-1 
solutions. 

In this algorithm, two points were left deliberately vague: the choice of 
the next active node and the choice of  branching variable. Several different 
options exist for both. 

For the choice of  the next active node, we have the following: 

NI:  depth-first search of  the branch-and-bound tree; 
N2: breadth-first search of  the branch-and-bound tree; 
N3: choose the active node whose parent node has the best lower bound; 
N4: choose the active node whose parent's solution s °pt is closest to a 0-1 

solution according to 

min{s °pt (xq), ( 1 - s °pt (xq)}. 
qElp~ 

For the choice of  the next branching variable: 

V 1. choose only variables corresponding to hypotheses nodes since a 0-1 
assignment to these variables guarantees a 0-1 assignment throughout 
the remaining variables; 

V2. order the choice of variables as shared nodes, then divide nodes, then 
hypothesis nodes, and so on; 

V3. choose the variable xq which minimizes 

{min{s °pt (xq), ( 1 - s Opt (Xq) ) }}; 

V4. choose the variable xq which maximizes 

{min{s °pt (xq), ( 1 - s °pt (xq) )}}; 

V5. choose the variable which has maximum associated cost; 
V6. use any combination of  the above. 

Obviously, many other techniques exist for making our choices, some 
based on the knowledge of  our problem and others based on general tech- 
niques. Combinations of  active node heuristics N1 and N3 together with 
branching variable heuristics V2 and V3 seem most promising. 7 

7Techniques VI and V2 seem to work best when values can propagate in a top-down 
fashion. Thus, using the induced linear constraint system as opposed to the semi-induced linear 
constraint system is desired. 
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Finally, since the success of branch-and-bound techniques depends on the 
ability to prune the active nodes early and as many as possible, we observe 
that pruning occurs whenever we have a 0-1 solution for the linear program. 
Although not every linear program results in a 0-1 solution, it is possible 
to build a 0-1 solution from the non-integer optimal solution. In fact, the 
construction is fairly straightforward and computationally cheap. 

Theorem 3.2. Let s be the optimal solution of  some WAODAG-(semi-)induced 
linear program. Construct a variable assignment s' f rom s by changing all 
nonzero values in s to 1. s' is a 0-1 solution for the (semi-)induced linear 
constraint system. 

(For intuitions on why this theorem holds, see the proof in Appendix A.) 
For both WAODAG-induced as well as semi-induced linear constraint sys- 

tems L, we consider the following construction from s: s' is constructed 
from s by changing all nonzero hypothesis node values in s to 1. Now, 
enforcing the boolean gate-like properties of the WAODAG, we propagate the 
boolean values from the hypothesis nodes up this boolean graph. 

Theorem 3.3. s' constructed from s above is a O-1 solution for L. 

Proof. Follows from Theorems 2.7 and 2.9. [] 

4. Experimental results 

We performed two experiments to measure the efficiency of our linear 
constraint satisfaction approach. The first involves a real application of 
our technique to solve cost-based abduction problems created by the story 
understanding system WIMP [6,7]. This allows us to make a comparison 
against the search-style heuristic described in [2] to solve these graphs. Our 
second experiment involves testing our approach on randomly generated 
WAODAGS as a gauge on how well the technique applies to the general class 
of  WAODAGS. Also, WAODAGS larger than those found in the first experiment 
are used. 

For both experiments, we employed active node method N 1 and branching 
variable technique V3 above. 

Experiment 1: WIMP WAODAGS 

WIMP is a natural language story comprehension system for parsing and 
understanding written English sentences [6,7]. It uses belief networks to 
perform the abductive inference tasks necessary to solve problems like 
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pronoun reference and word-sense disambiguation. The belief networks can 
then bc transforrncd into equivalent cost-based abductions problems as 
shown in [ 3 ]. 

The algorithm for determining the minimal cost proof in [2] is based on 
a best-first search of the WAODAG. The basic idea is that one starts with 
the partial proof consisting only of the evidence nodes in the WAODAG and 
then creating alternative partial proofs. 8 In each iteration, a partial proof 
is chosen to be expanded. It is cxpandcd by adding some new nodcs and 
edges to the existing partial proof which takcs into consideration how one 
of its goals can be achieved locally according to the currcnt partial proof 
and nearby nodes. This continues until all the goals (such as cvidcncc) are 
satisfied and results in a minimal cost proof. How this is actually donc is 
outlined in [ 3 ]. 
Naturally, the success of this algorithm depends on having a good heuris- 

tic function for deciding which partial proof should be worked on next. 
Furthermore, the heuristic function must be admissible to guarantee that 
the first proof generated is the minimal cost proof. Efficient heuristics have 
been difficult to find. Prior to [2 ] the only basic admissible heuristic that 
had been used was cost-so-far in [3,21 ]. Simply put, the partial proofs are 
weighted according to the costs of the hypotheses which they currently con- 
tain. The difficulty in the cost-so-far approach is that no estimation on the 
"goodness" of the partial proof can be made until hypothesis nodes have 
been reached. Recently, a more efficient heuristic was introduced which 
used a more sophisticated cost estimator [2]. In brief, the new heuristic 
propagates the costs of the hypothesis nodes down the network to give some 
estimation of the "goodness" of each partial proof. The admissibility of 
this heuristic is guaranteed by the special care it takes in expanding partial 
proofs. (For precise details and the admissibility proof of this heuristic, see 
[21). 

Since the problem of finding the minimal cost explanations is NP-hard, 
we are naturally interested in the expected-case growth rates of the heuristic 
search method versus our linear constraint systems. Unfortunately, perform- 
ing average-case analyses is a rather difficult task. This has certainly been the 
case when studying either heuristic search methods or linear programming. 
Thus, we are only left with making empirical studies on the two approaches 
as the basis for our comparisons. However, this technique is wrought with 
pitfalls unless we are extremely careful. If we employ a floating-point op- 
timization in our linear programming implementation which enhances the 
efficiency of our approach, does this imply that our linear constraint ap- 
proach has improved relative to the search heuristic? Typically, if the two 

aA partial proof is a subgraph of  the WAODAG. 
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methods were somewhat more isomorphic, a similar optimization can also 
be applied to the other method. However, as we can easily see, the floating- 
point optimization is not very useful to the heuristic search method. 

Our goal is to compare the two methods above without being influenced by 
"approach-independent" factors, such as compiler optimizations, machine 
type, etc., which can directly alter the empirical results. Often, this can be 
done by comparing approaches at a more abstract level. For example, two 
search routines could be compared by measuring how many search steps 
each took, independent of  the time for each step. Unfortunately, the radical 
differences between the two approaches we are comparing defeats us. There 
is no obvious common ground for comparison except the most obvious 
one--how long the systems took. However, suppose that given a collection 
of  ordered pairs of  the form 

(WAODAG complexity, CPU usage), 

we attempt to perform a least-squares fit of  the data on the function t = 
e a+bx, where t is the CPU seconds used and x is the complexity of  the 
WAODAG to be solved. We can now compare the relative efficiency of  each 
approach by comparing the constant b for both fits. In this way, we hope 
to eliminate the approach-independent factors. 

There are several complexity measures available for WAODAGS. We chose 
as our measure the number of  edges in the WAODAG as it seemed to us 
to have the most direct impact on both the graph search heuristic and our 
linear constraints approach. An expansion of  a partial proof for the search 
heuristic necessitates the traversal of  the graph along its edges. For our 
linear constraint systems, Proposition 2.12 stipulates that the number of  
constraints required to solve a WAODAG is roughly the number of  edges in 
the WAODAG. 9 

In this experiment, 140 WAODAGS generated by WIMP ranging in size from 
7 nodes to 158 nodes and from 12 edges to 375 edges were presented to 
both approaches. Table 1 summarizes the set of  WAODAGS generated by 
WIMP for our experiment. Figures 4 and 5 show the semi-logarithmic plot of  
our timings for the WIMP heuristic and for our linear constraint satisfaction 
approach. 

We found that in our linear constraint satisfaction approach, roughly 61% 
of the WAODAGS generated by WIMP were solved using only linear program- 
ming without resorting to branch-and-bound. Furthermore, the number of  
active nodes actually used during branch-and-bound cases were only a small 
fraction of  the total number of  nodes involved. On average for the branch- 
and-bound cases alone, the number of  active nodes was 6.2% of the nodes 

9GeneraUy, the number of edges is some multiple of the number of nodes. 
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Table 1 
WIMP WAODAG summary. 

Min 
Max 
Average 
Median 
Total 

Nodes Edges Hypotheses OR-nodes 

7 12 2 3 
158 375 41 59 
42.54 93.49 10.88 16.76 
34 75 9 14 

5955 13089 1523 2346 

in the graph, and overall, the average number for all WAODAGS was 2.4%. 
Performing a least-squares fit on the timings gives us the following: 

WIMP heuristic: e -5"32+0"0245x, 

Constraint system: e -3"80+0-0187x, 

which serves to verify some of our expectations on the expected growth 
rate of  our linear constraint satisfaction approach as compared to the search 
technique. 

Although we have just shown that our approach is better than the search 
heuristic found in WlMP, the best exponential fit does not actually describe 
our timings very well. Consider again the semi-logarithmic plot of  our linear 
constraint satisfaction approach in Fig. 5. 

As we can clearly see, our linear constraint satisfaction approach actually 
exhibits an expected subexponential growth rate. By further attempting to 
fit our data to ax o, we get 0.0001371x t-6484 as our expected growth curve. 
To show that the polynomial fit is better, we compare the two least square 
error fits, that is, 

~ l Z e -  F(e)l 2 
eEA 

where A is the set of  all WAODAGS, Xe is the amount of  CPU seconds 
taken to solve WAODAG e and F (e) is the amount of  time predicted by 
the least-squares fit. Taking the error of  the exponential fit and dividing it 
by the error of  the polynomial fit, we roughly find a 10000% improvement 
of  the polynomial fit over the exponential. When we attempted to perform 
a polynomial fit on the search heuristic, we found that the error actually 
tripled. Although the search heuristic is slightly faster than our approach 
on the very small (in terms of  edges) WAODAGS, our approach seems to be 
quite fast and practical at solving all the WAODAGS generated by WIMP. 

Experiment 2: random WAODAGs 

Our purpose in this experiment is to further test the efficiency of our linear 
constraint satisfaction approach when faced with more general and larger 
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Table 2 
Random WAODAG summary. 

Min 
Max 
Average 
Median 
Total 

Nodes Edges Hypotheses OR-nodes 

36 39 8 7 
387 699 154 135 
224.2 328.4 74.2 75.6 
225 323 76 79 

22424 32844 7423 7559 

21 

WAODAGS than those generated by WIMP. In particular, we are interested 
in whether the expected subexponential growth rate exhibited for the WIMP 
generated WAODAGS remains to be the case for these randomly generated 
graphs. We also considered testing the search heuristic on these graphs. 
However, the explosive growth rate of the heuristic made it infeasible to 
attempt these much larger graphs. 

100 WAODAGS were generated ranging from 36 to 387 nodes and from 
39 to 699 edges. They were generated randomly to by first determining the 
number of nodes n from 1 to 400 and then instantiating said nodes. Next, 
the number of edges from n to 800 to be included in this graph is determined 
and the edges were randomly instantiated between two nodes, l l Finally, hy- 
pothesis nodes are identified and are arbitrarily assigned some non-negative 
cost. Table 2 summarizes the set of randomly generated WAODAGS fo r  this 
experiment. 

We found that 97% of the randomly generated WAODAGS were solved 
using only linear programming without branch-and-bound. 12 Performing a 
least-squares exponential fit gives us e -5-49+0'0614x. 

Consider the logarithmic plot of our linear constraint satisfaction approach 
in Fig. 6. Again, we can clearly see that our linear constraint satisfaction ap- 
proach actually exhibits an expected subexponential growth rate. By further 
attempting to fit our data to a x  b, we get 0.0079188x 2"°3°8 as our growth 
curve. Again, the error fit actually improved roughly 2300%. 

5. Conclusions 

From the two experiments above, our linear constraint satisfaction ap- 
proach seems very promising. A very surprising result is that the optimal 
solution found for the linear program without branch-and-bound was either 

lOBy random, we mean uniform distribution. 
l lTo guarantee that our resulting graph is acyclic, we initially imposed a random topological 

ordering on the nodes. 
12We are currently investigating why this differs so much from WIMP-generated WAODAGs. 
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already a 0-1 optimal solution or a very close approximation as indicated 
by the relatively small number of active nodes used. Furthermore, branch- 
and-bound can be performed incrementally by using methods such as the 
dual simplex algorithm. Thus, the additional computational effort required 
beyond solving the initial linear program was rather minimal. 

Instinctively, we would have guessed that the bulk of our problems would 
have centered around the branch-and-bound process since it seems unlikely 
that our linear program should have an optimal solution which is also 
integral. Why they are so often integral is a puzzling problem. We are 
currently studying this phenomenon, however, it seems to be a very difficult 
problem. We suspect that abduction may fall into a class of problems 
considered to be "easy" integer programming problems. There seems to 
be a link between abduction and set-covering problems and it has been 
frequently observed that matching and set covering problems on graphs are 
very amenable to linear programming formulations in that they very often 
have integral optimal solutions [4]. 

As for the association between abduction and set-covering, it is admittedly 
a weak one. We offer only two suggestive points. First, the early abduction 
model for medical diagnoses presented in [14] is such a set-covering ap- 
proach. Cost-based abduction is a generalization of [14]. Second, in the 
original formulation of cost-based abduction presented in [3], the proof 



A linear constraint satisfaction approach to cost-based abduction 23 

of  NP-completeness was accomplished by transforming the vertex covering 
problem into cost-based abduction. 

6. Further research 

In conclusion, the linear constraint satisfaction approach can be used to 
solve the minimum cost-based abduction problem in an efficient manner 
superior to existing search-style heuristics. The formalism of linear constraint 
satisfaction provided a natural framework for finding minimal cost proofs. 

It seems likely that our approach can be extended to model other prob- 
lems in explanation and reasoning. One of  the extensions being currently 
explored involves generating the other alternative explanations. In abductive 
explanation, having alternative explanations is often useful and sometimes 
necessary. Having the second best, third best, and so on, can provide a useful 
gauge on the quality of  the best explanation. (Details concerning the gener- 
ation of alternative explanations can be found in [ 17 ].) Another extension 
being explored involves modeling belief revision in Bayesian networks [13] 
using our linear constraint systems [17 ]. Finally, other extensions currently 
being incorporated into our approach include handling partial explanations. 

Appendix A. Proofs 

Proof of Theorem 2.7. Assume that s[e] is not a solution of L ( W )  = 
(F, I, ¥) .  This implies that there exists a constraint Q in I which is violated. 
(For notational convenience, we will denote s [e ] (xp) = a by xp = a.) 

Case 1: Q is of the form xp <~ Xq. Since s[e] is a 0-1 assignment, xp = 1 
and xq = 0. From (4) and (7), we get can conclude that either r (p) = AND 
or r(q) = OR. If r(p) = AND, then q is a parent o f p  and xq must equal 1 
in s[e]. If r(p) = OR, then p is a child of q and Xp must equal 0 in s[e]. 
Since neither is the case, Q cannot be violated. 

Case 2: Q is of the form 

X q - [ D [ +  1 ~<xp, 
qED 

where D is some set of  nodes. For Q to be violated, 

y'~ xq - xp > IDI - 1. 
qED 

This implies that xp = 0 and for all q ~ D, xq = 1. From (5), we can 
conclude that r (p) = AND and D = Dp. Since r (p) is an AND node, if  xp 
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equals 0, then all the parents of  p must also equal zero. Thus, Q cannot be 

violated. 
Case 3: Q is of the form 

Z Xq ~ Xp, 
qED 

where D is some set of  nodes. This implies that xp = 1 and for all q E D, 
xq = 0. From (6), we conclude that r(p) = OR and D = Dp. Since r(p) 
is an OR node, Xp equals 1 implies that there exists an q E Dp such that 
xq = 1. Thus, Q cannot be violated. 

Cases 1 to 3 cover every type of  violations of  the linear constraint system 
possible. Therefore, e cannot be an explanation for W. [] 

Proof of Theorem 2.9. Assume e[s] is not an explanation for W. This 
implies that one or more of  the following conditions hold: (For notational 
convenience, we will denote s(xp) = a by xp = a and e[s] by e.) 

(a) There exists an AND-node p in W such that e(p) = true and there 
exists a q E Dp such that e (q) = false. 

(b) There exists an AND-node p in W such that e(p) = false and for all 

q E Dp, e(q) = true. 
(c) There exists an OR-node p in W such that e(p) = true and for all 

q E Dp, e(q) = false. 
(d) There exists an OR-node p in W such that e(p) = false and there 

exists a q E Dp such that e (q) = true. 
(e) There exists an evidence node p in S such that e(p) = false. 

Case 1. From 
I. Since, xp = 1 

Case 2. From 
does not hold. 

Case 3. From 
does not hold. 

Case 4. From 
does not hold. 

Case 5. From 
not hold. 

(4), r(p) = AND implies that the constraint Xp ~ Xq is in 
and xq = 0, condition (a) does not hold. 
(5), r(p) = AND implies that xp >t 1. Thus, condition (b) 

(6), r(p) = OR implies that xp ~ 0. Thus, condition (c) 

(7), r(p) = OR implies that xp >i 1. Thus, condition (d) 

(8), p E S implies that xp = 1. Thus, condition (e) does 

Therefore, s is not a 0 - i  solution in LE (W). [] 

Before we can prove the next theorem, we present the definition of  
AND-DAGs. 
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Definition A.1. An AND-DAG is a WAODAG whose nodes which are labeled OR 
have at most outdegree one. Given a WAODAG W = ( G , c , r , S ) ,  construct 
W '  = ( G ' , c ' , r ' , S )  from W by removing all but one of the parent from 
every OR-node. Now, remove from W', all nodes and associated edges which 
are not reachable from any evidence node in S. The resulting AND-DAG W t 
is said to be induced by W. 

Proposition A.2. Let  W '  be an AND-DAG induced by W.  For any truth as- 

s ignment  e, i f  e (p)  = true for  all nodes p in W' ,  then e is an explanation 

for  W.  

Proof of Theorem 2.14. Let s be any optimal 0-1 solution for LE(W ). 
Assume e [s] is not an explanation for W. This implies that one or more 
of the following conditions hold: (For notational convenience, let e denote 
e[s] . )  

(a) There exists an AND-node p in W such that e ( p )  = true and there 
exists a q E Dp such that e ( q )  = false. 

(b) There exists an AND-node p in W such that e ( p )  = false and for all 
q E Dp, e(q) = true. 

(c) There exists an OR-node p in W such that e ( p )  = true and for all 
q E Dp, e (q) = false. 

(d) There exists an OR-node p in W such that e ( p )  = false and there 
exists a q E Dp such that e (q) = true. 

(e) There exists an evidence node p in S such that e ( p )  = false. 

From Definition 2.13, conditions (a), (c), and (e) cannot hold. We now 
only consider conditions (b) and (d). 

We can view the process of  finding a suitable 0-1 solution as the prop- 
agation of information from evidence nodes through AND/OR-nodes to hy- 
pothesis nodes. The remaining conditions, (b) and (d), indicate that zero 
assignments do not propagate. Let M be the set of  nodes p in W such that 
e ( p )  = false and whose childrens' assignment permits either condition (b) 
or (d) to hold. Let M'  be the subset of M such that each node in M'  does 
not have a descendant also in M. 

Let p be any node in M'  and D~ -1 be the immediate children of node p. 
For each q in Dp 1 , one of  the following holds: 

(i) e ( q )  = false and r ( q )  = AND. 

(ii) e ( q )  = false and r ( q )  = OR. 
(iii) e ( q )  = true and r ( q )  = OR. 

e ( q )  = true and r ( q )  = AND cannot both be true since it would violate 
the definition of M' .  For the third combination, there exists some node 
p' # p in Dq such that e(p ' )  = true. 
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Let WM be the resulting WAODAG obtained by first removing all nodes 
and associated edges from W in M and then removing those which are not 
reachable from any evidence node in S. We can easily see that any AND-DAG 
obtained from W~ is an AND-DAG for W. 

Since s is an optimal 0-1 solution for LE(W) and c(q,false) ~< c(q,true) 
for any node q, for each hypothesis node p in W but not in WM, e(p) 
can be set to false. (It can be easily shown that if e(p) = true, then 
c(p, f a l s e ) =  c(p, true).) Now, by propagating the truth values from the 
hypothesis nodes, another optimal 0-1 solution will be generated. This new 
solution will be a best explanation for W. 

We can easily determine M and the final 0-1 solution in O ([Ew ) steps. [] 

Proof of Theorem 3.2. Assume that s' is not a 0-I  solution for the semi- 
induced linear constraint system. This implies that there exists a nonzero 
variable Xq such that by setting Xq to 1, this violates some constraint Q in 
the linear constraint system. 

Case 1: Xq <~ xp is violated. Since xq is nonzero, this implies that xp was 
also nonzero to begin with. Thus xp would have also been set to 1. Thus, 
this constraint is not violated. 

Case 2: ~peoq xp >1 xp is violated. Since xq is nonzero, this implies that 
some xp where p E Dq is also nonzero. Thus, xp would have also been set 
to 1. Thus, this constraint is not violated. 

All the cases for constraint violations have been considered. No con- 
straint is violated. Contradiction. We can similarly proved this for induced 
systems. [] 
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